Final Exam , MTH 211, Spring 2010

Ayman Badawi

QUESTION 1. Let L_{1} and L_{2} be two lines intersect in an angle α such that $\alpha \neq 90$. USED UNMARKED RULER AND A COMPASS TO BISECT THE ANGLE α. STATE CLEARLY THE STEPS OF CONSTRUCTIONS (NO MATH JUSTIFICATION IS NEEDED)

QUESTION 2. Let $a b c d$ be a square with $a d$ as the base and $c d$ as the width. Let m be the midpoint of $a d$. Draw a circle C centered at m with radius $c m$. Then C intersects the extended line of $a d$ at a point k. Prove that $a k / a d=$ the Golden Ratio.

QUESTION 3. USE UNMARKED RULER AND A COMPASS TO CONSTRUCT A GOLDEN CUTE TRIANGLE with base that has length 4 cm (you may use a marked ruler to measure 4 cm).

QUESTION 4. Let L_{1} and L_{2} be two perpendicular lines. Choose a point m such that m does not lie on L_{1} and m does not lie on L_{2}. USE UNMARKED RULER AND A COMPASS to find a point, say a, on the line L_{1} and a point, say b on L_{2} so that the line segment $a b$ passes through m and $|a m|=2|m b|$. STATE THE STEPS OF CONSTRUCTIONS. THEN VERIFY YOUR CONSTRUCTION.

QUESTION 5. Let C be a circle of radius 3 and center O. Let A be a point inside C such that $|O A|=1 \mathrm{~cm}$.
a) Is there a circle D of radius 3.5 cm such that D passes through A and orthogonal to C ? if yes, do nothing. If no, then explain why not.
b) USE a marked ruler and a compass to construct a circle F of radius $\sqrt{17}$ such that D passes through A and orthogonal to C.

QUESTION 6. Let C be a circle of radius 2 and center O. Let A be a point such that $|O A|=1$. Let D be a circle orthogonal to C and centered at $\operatorname{Inv}(A)$. Let m be the intersection point of D with the line segment $\operatorname{OInv}(A)$. Find the exact length of the line segment $\operatorname{Inv}(A) \operatorname{Inv}(D)$.

QUESTION 7. (i) Can we construct an angle of 10 degrees (using unmarked ruler and a compass)? EXPLAIN
(ii) Can we construct a regular 22-gon (using unmarked ruler and compass)? explain
(iii) I claim that we can construct a regular 40-gon. Justify my claim. What will be the measurement of each interior angle?
(iv) Three types of regular gon: Say K, M, N. The K-type is regular 12 gon. We must use at least one piece of each type in order to tile a plane. What are the possibilities for the M-type and the N-type? State all possibilities WITHOUT ANY JUSTIFICATION.

QUESTION 8. (i) Let H be a hyperbolic circle with radius 3 cm and center O . Let A be a point inside H such that $d_{h}(O, A)=\ln (5)$ (the hyperbolic distance is $\ln (5)$). Find $d(O, A)$ (the Euclidean distance between O and A). Show the work
(ii) Let H be a hyperbolic circle with radius 3 cm and center O . Let B be a horizon point on H. Now choose two points A, C inside H such that $d(O, A)=d(O, C)=1 \mathrm{~cm}$. Given A, B do not lie on a diameter of H, and A, C do not lie on a diameter of H, and C, B do not lie on a diameter of H. Construct two lines say, L_{1}, L_{2}, such that L_{1} passes through A, L_{2} passes through C, L_{1} is parallel to L_{2} but L_{1} meets L_{2} at B. STATE THE STEPS OF CONSTRUCTIONS WITHOUT ANY MATH JUSTIFICATION.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

